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Microstructures
Metallic microstructures

Study (micro)properties of metals including

grain size/number of grains

grain shape

grain clustering

Figure: (a) Single-phase steel microstructure, (b) AISI stainless steel
with M23C6 carbides precipitation (two phases), (c) ODS (Oxide
Dispersion Strengthened) Eurofer steel (by W. Li, J. Hidalgo, V.
Marques Serra Pereira).
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Stereology
Stereology: sampling

Figure: Survey of sectioning and sampling used for stereological
estimation of particle size distribution. Using planar sampling design, a
microstructure is observed in a planar window while linear sampling
design uses test segments (commonly a system of parallel equidistant
segments) (Ohser, Sandau 2000).
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Poisson-Voronoi diagrams
The null model

Definition

Given a set of distinct points Φ = {xi , i ∈ N} in Rd the Voronoi
diagram of Rd with nuclei xi is a partition of Rd consisting of cells

Ci = {y ∈ Rd : ‖y − xi‖ ≤ ‖y − xj‖ for all j 6= i}, i ∈ N

where ‖ · ‖ is the Euclidean distance.

If X is the realization of a homogeneous Poisson point process the
resulting structure is the Poisson-Voronoi diagram VΦ.
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Question

Given multiple 2D material sections equally spaced, could a
Poisson-Voronoi diagram be a model for approximating the 3D
material microstructure?

Figure: EBSD scans of extra low carbon strip steel (by J. Gálan López)
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Question
2D Sectional Poisson-Voronoi Diagrams

Question: “For integers 2 ≤ t ≤ d − 1, is the intersection
between an arbitrary but fixed t-dimensional linear affine subspace
of Rd and the d-dimensional Voronoi tessellation generated by a
point process X a t-dimensional Voronoi tessellation?”

Answer: NO (Chiu et al.,1996)
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Topological data analysis
... and persistence diagrams

Figure: From An introduction to TDA, F. Chazal, B. Michel
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Our contribution
Our vines

Figure: 3D Voronoi cells
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section Figure: Stacked diagrams
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Our contribution
Stacking persistence diagrams

At each section h we compute the persistence diagram given by
the collection

{(Bq
i (h), Dq

i (h))i}

of birth and death times of q features. We propose to “stack”
persistence diagrams over sections
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Topological data analysis
Persistence vineyards

Extension of persistence diagrams (Cohen-Steiner et al., 2006): time
slices

Figure: Persistence vineyards (Yoo et al., 2016)



Tests for metallic
microstructures

AC

Microstructures

Mathematical model

Our contribution

Asymptotic regime

Finite windows

Conclusions

Our contribution
Trajectories

Qn := [−n/2, n/2]2, metal= Qn × [0, 1]

Li

Ji

Γi[0, 1]

Figure: Point process of trajectories within the window Qn × [0, 1]

Let {(Ji,n, Li,n,Gi,n)}i≥1 ⊆ [0, 1]× [0, 1]× C ([0, 1],Qn) be a
point process

Set

Xi,n(h) :=
{(

Γi,n((h − Ji,n)/Li,n), h
)

: Ji,n ≤ h ≤ Ji,n + Li,n
}
.

Xn = {Xi,n(·)}i≥1 is a process of trajectories with offset
Ji,n ∈ [0, 1], length Li,n ∈ [0, 1] and shape Γi,n ∈ C ([0, 1],Qn)
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Example

Let P = (Pi )i be a homogeneous Poisson process on Qn × [0, 1]
with associated P-V tessellation.
Let Gi, n(h) be the centroid of the “sectional” cell i at level h. We
consider

Xi, n(·) = Gi,n(·)
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Our contribution
Test statistics

Longitudinal test statistics (with feature tracking)

Tn = T (Xn) :=
∑

i feature

ξ
(
{(Bi (h),Di (h))}h

)
.

Eg: ξ=average number of slices where feature i is present.

Cross-sectional statistics (without feature tracking)

Tn =
1

H

H∑
h=1

∑
i

ξ′(Bi (h),Di (h)).

Eg: averaged persistent Betti numbers, and

T q
TP =

1

H

1

|W |

H∑
h=1

∑
i feature in h

(Dq
i (h)− Bq

i (h)).

where H is the total number of sections, |W | the size of the
domain
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Our contribution: asymptotic regime
Asymptotic normality: scalar level

Tn = T (Xn), Xn trajectories.

Assumption: exponential stabilization

Xn is exponentially stabilizing. Roughly, changing the point
process far away from x ∈ Qn does not change the trajectories in
the vicinity of x .

Theorem (C, Hirsch, Vittorietti, 2022)

Assume further that Xn emerges from a Poisson point cloud, and
that ξ is bounded. Then, the statistic

Tn − E [Tn]

n

converges in distribution to a normal random variable.
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Proof ideas

Martingale CLT applied to Tn

Important edge correction

Exponential decay of stabilization radius
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Our contribution: asymptotic regime
Asymptotic normality: functional level

Theorem (C, Hirsch, Vittorietti, 2022)

Assume further that the factorial moments of {Xi,n(h)}i are
uniformly bounded. Then, as a function on [0, 1]2, in the Skorohod
topology the recentered and rescaled (M-bounded) persistent
Betti numbers

βn − E [βn]

n

converge in distribution to a centered Gaussian process.
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Proof ideas

Martingale CLT decomposition

Restriction to sub-boxes in a grid

Exponential decay of correlations (via cumulant bounds)
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Our contribution: finite-window regime
Simulation results

Simulation on 170× 170× 85, 9 slices

Null model: Poisson-Voronoi diagram with sites generated
according to a Poisson process with intensity λ = 2.18 ∗ 10−4

(⇒ real data)

Matérn hard-core Voronoi diagrams

Matérn cluster Voronoi diagrams with cluster number ncl,
intensity dcl and cluster radius R
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Our contribution: finite-window regime
Simulation results

Simulation on 170× 170× 85, 9 slices

Null model: Poisson-Voronoi diagram with sites generated
according to a Poisson process with intensity λ = 2.18 ∗ 10−4

(⇒ real data)

Matérn hard-core Voronoi diagrams

Matérn cluster Voronoi diagrams with cluster number ncl,
intensity dcl and cluster radius R

Table: Parameters

HC1 HC2 CL1 CL2 CL3

R 5.25 5.95 42.5 42.5 42.5
ncl / / 10 5 4
λcl / / 10 20 25
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Simulation results

Figure: 2D slices of different Voronoi diagrams
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Preliminary results

Figure: x − y coordinates of the centers of gravity of the 2D sectional
grains of 3D Voronoi diagrams. Different colors represent different
sections
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Simulation results
Our statistics

Cross-sectional total persistence:

T q
TP =

1

H

∑
h

1

|W |
∑
i

(Di (h)− Bi (h))

Vine-based persistence:

T q
M :=

1

|W |
∑
i≤Nq

1

nqh(i)

∑
h

(Di (h)− Bi (h))

where Nq is the total number of features of dimension q
observed in all the slices and nqh(i) is the number of slices in

which the ith q-feature is visible.

(Pooled) Ripley K-function:

TRip :=

∫ rRip

0

K̂pool(r)dr



Tests for metallic
microstructures

AC

Microstructures

Mathematical model

Our contribution

Asymptotic regime

Finite windows

Conclusions

Simulation results
Our statistics

Cross-sectional total persistence:

T q
TP =

1

H

∑
h

1

|W |
∑
i

(Di (h)− Bi (h))

Vine-based persistence:

T q
M :=

1

|W |
∑
i≤Nq

1

nqh(i)

∑
h

(Di (h)− Bi (h))

where Nq is the total number of features of dimension q
observed in all the slices and nqh(i) is the number of slices in

which the ith q-feature is visible.

(Pooled) Ripley K-function:

TRip :=

∫ rRip

0

K̂pool(r)dr



Tests for metallic
microstructures

AC

Microstructures

Mathematical model

Our contribution

Asymptotic regime

Finite windows

Conclusions

Simulation results
Our statistics

Cross-sectional total persistence:

T q
TP =

1

H

∑
h

1

|W |
∑
i

(Di (h)− Bi (h))

Vine-based persistence:

T q
M :=

1

|W |
∑
i≤Nq

1

nqh(i)

∑
h

(Di (h)− Bi (h))

where Nq is the total number of features of dimension q
observed in all the slices and nqh(i) is the number of slices in

which the ith q-feature is visible.

(Pooled) Ripley K-function:

TRip :=

∫ rRip

0

K̂pool(r)dr



Tests for metallic
microstructures

AC

Microstructures

Mathematical model

Our contribution

Asymptotic regime

Finite windows

Conclusions

Exploratory analysis
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Preliminary results
Power of the tests

α = 0.05, 5000 realisations, 9 sections, H0 : Poi(λ)

Figure: Rejection rates for the test statistics under the Poisson–Voronoi
diagram null model and the alternatives

Reconstruction algorithm
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Real data
z-scores

Figure: z-scores associated with the different test statistics when the
slices are tested against a Poisson-Voronoi null model
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Conclusions

Asymptotic normality of longitudinal and cross-sectional
statistics

More statistics to be evaluated

Test on (more) real data

matching algorithm for the centers of gravity among the
different sections

Use of other observables to construct cells (vertices)

Other nulls (power-law correlations)...
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Thank you for your
attention!
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