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Metallic microstructures

Microstructures

Study (micro)properties of metals including
@ grain size/number of grains
@ grain shape

@ grain clustering

SED 20.0kV WD10mm HV x60
TU Delft

Figure: (a) Single-phase steel microstructure, (b) AlSI stainless steel
with M23C6 carbides precipitation (two phases), (c) ODS (Oxide
Dispersion Strengthened) Eurofer steel (by W. Li, J. Hidalgo, V.
Marques Serra Pereira).
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Stereology

Stereology: sampling

Microstructures

Planar section Thin section

Planar sampling

Linear sampling % W

Figure: Survey of sectioning and sampling used for stereological
estimation of particle size distribution. Using planar sampling design, a
microstructure is observed in a planar window while linear sampling
design uses test segments (commonly a system of parallel equidistant
segments) (Ohser, Sandau 2000).
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Mathematical model

Definition
Given a set of distinct points ® = {x;, i € N} in R¢ the Voronoi
diagram of RY with nuclei x; is a partition of R? consisting of cells

G={yeR?: |y —x| <|ly — x| forall j#i}, i€N

where || - || is the Euclidean distance.
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The null model

Mathematical model

Definition
Given a set of distinct points ® = {x;, i € N} in R¢ the Voronoi
diagram of RY with nuclei x; is a partition of R? consisting of cells

G={yeR?: |y —x| <|ly — x| forall j#i}, i€N

where || - || is the Euclidean distance.

v

If X is the realization of a homogeneous Poisson point process the
resulting structure is the Poisson-Voronoi diagram V.
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Mathematical model

Given multiple 2D material sections equally spaced, could a
Poisson-Voronoi diagram be a model for approximating the 3D
material microstructure?

0 . 750 0

Figure: EBSD scans of extra low carbon strip steel (by J. Glan Lépez)
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2D Sectional Poisson-Voronoi Diagrams

Mathematical model

Question: “For integers 2 < t < d — 1, is the intersection
between an arbitrary but fixed t-dimensional linear affine subspace
of RY and the d-dimensional Voronoi tessellation generated by a
point process X a t-dimensional Voronoi tessellation?”
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2D Sectional Poisson-Voronoi Diagrams

Mathematical model

Question: “For integers 2 < t < d — 1, is the intersection
between an arbitrary but fixed t-dimensional linear affine subspace
of RY and the d-dimensional Voronoi tessellation generated by a
point process X a t-dimensional Voronoi tessellation?”

Answer: NO (Chiu et al.,1996)
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Mathematical model
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Figure: From An introduction to TDA, F. Chazal, B. Michel




Our contribution

Our vines

Figure: Persistence diagram, one

section
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Figure: Stacked diagrams
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Mathematical model
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Stacking persistence diagrams

Our contribution

At each section h we compute the persistence diagram given by

the collection
{(B7(h), D7 (h)):}

of birth and death times of g features. We propose to “stack”
persistence diagrams over sections




Topological data analysis

Persistence vineyards

Extension of persistence diagrams (Cohen-Steiner et al., 2006): time
slices
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Figure: Persistence vineyards (Yoo et al., 2016)
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Our contribution
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Trajectories

Q. = [—n/2, n/2]?, metal= Q, x [0, 1]

Our contribution
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Trajectories

Q. = [—n/2, n/2]?, metal= Q, x [0, 1]

0.1 > . T ) <

J;

Our contribution

Figure: Point process of trajectories within the window Q, X [0, 1]

o Let {(Jin, Lin, Gin)}ti=1 €[0,1] x [0,1] x C([0,1], Q,) be a
point process
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Trajectories

Q. = [—n/2, n/2]?, metal= Q, x [0, 1]
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Figure: Point process of trajectories within the window Q, X [0, 1]

o Let {(Jin, Lin, Gin)}ti=1 €[0,1] x [0,1] x C([0,1], Q,) be a
point process

@ Set

Xi,n(h) = {(ri,n((h - Ji,n)/Li,n)a h) . Ji,n <h< Ji,n + Lim}-
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Trajectories

Q. = [—n/2, n/2]?, metal= Q, x [0, 1]

0.1 > . T ) <

J;

Our contribution

Figure: Point process of trajectories within the window Q, X [0, 1]

o Let {(Jin, Lin, Gin)}ti=1 €[0,1] x [0,1] x C([0,1], Q,) be a
point process

@ Set
Xi,n(h) = {(ri,n((h - Ji,n)/Li,n)a h) . Ji,n <h< Ji,n + Lim}-

o X, ={Xi.n(-)}i>1 is a process of trajectories with offset
Jin €10,1], length L; , € [0,1] and shape I'; , € C([0,1], Q,)
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Our contribution

Let P = (P;); be a homogeneous Poisson process on @, X [0, 1]
with associated P-V tessellation.

Let G; n(h) be the centroid of the “sectional” cell i at level h. We
consider

Xi,n(') = Gi,n(')
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Test statistics

o Longitudinal test statistics (with feature tracking)

To=T(X2) = Y E{(Bi(h), Di(h)}n)-

i feature

Our contribution

Eg: £=average number of slices where feature i is present.
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Test statistics

o Longitudinal test statistics (with feature tracking)

To=TXa):= > E{(Bi(h). Di(h))}n).

i feature

Our contribution

Eg: £=average number of slices where feature i is present.

o Cross-sectional statistics (without feature tracking)

T, HZZ& (), Di(h)).

Eg: averaged persistent Betti numbers, and

T3, = H|W|Z S (Di(k) - B ().

h=1 i feature in h

where H is the total number of sections, |W/| the size of the
domain
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Asymptotic normality: scalar level

T, = T(X,), X, trajectories.
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Asymptotic normality: scalar level

T, = T(X,), X, trajectories.

Assumption: exponential stabilization

X, is exponentially stabilizing. Roughly, changing the point
process far away from x € @, does not change the trajectories in
the vicinity of x.




Our contribution: asymptotic regime

Asymptotic normality: scalar level

T, = T(X,), X, trajectories.

Assumption: exponential stabilization

X, is exponentially stabilizing. Roughly, changing the point
process far away from x € @, does not change the trajectories in
the vicinity of x.

Theorem (C, Hirsch, Vittorietti, 2022)

Assume further that X,, emerges from a Poisson point cloud, and
that £ is bounded. Then, the statistic

T, — E[T,]
n

converges in distribution to a normal random variable.
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@ Martingale CLT applied to T,
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@ Martingale CLT applied to T,

@ Important edge correction
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Proof ideas

AC

@ Martingale CLT applied to T,
@ Important edge correction

o Exponential decay of stabilization radius
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Asymptotic normality: functional level

Theorem (C, Hirsch, Vittorietti, 2022)

Assume further that the factorial moments of {X; ,(h)}; are
uniformly bounded. Then, as a function on [0,1]?, in the Skorohod
topology the recentered and rescaled (M-bounded) persistent
Betti numbers

6n B E[Bn]

n
converge in distribution to a centered Gaussian process.
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totic regime

@ Martingale CLT decomposition
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@ Martingale CLT decomposition

@ Restriction to sub-boxes in a grid
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@ Martingale CLT decomposition
@ Restriction to sub-boxes in a grid

e Exponential decay of correlations (via cumulant bounds)
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Simulation results

Simulation on 170 x 170 x 85, 9 slices

@ Null model: Poisson-Voronoi diagram with sites generated
according to a Poisson process with intensity A = 2.18 * 10~4
(= real data)
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Simulation results

Simulation on 170 x 170 x 85, 9 slices

@ Null model: Poisson-Voronoi diagram with sites generated
according to a Poisson process with intensity A = 2.18 * 10~4
(= real data)

@ Matérn hard-core Voronoi diagrams

@ Matérn cluster Voronoi diagrams with cluster number ng,
intensity d. and cluster radius R
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Simulation results

Simulation on 170 x 170 x 85, 9 slices

@ Null model: Poisson-Voronoi diagram with sites generated
according to a Poisson process with intensity A = 2.18 x 10~4
(= real data)

@ Matérn hard-core Voronoi diagrams

@ Matérn cluster Voronoi diagrams with cluster number n,
intensity d. and cluster radius R

Table: Parameters

HC; HC, CL; ClL, Cls
R 525 505 425 425 425
na |/ 10 5 4
X /) 10 20 25




Tests for metallic

Simulation results
Poi HC: HE,
CL, CL; CLs

Figure: 2D slices of different Voronoi diagrams
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Figure: x — y coordinates of the centers of gravity of the 2D sectional
grains of 3D Voronoi diagrams. Different colors represent different
sections
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Our statistics

@ Cross-sectional total persistence:
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Our statistics

@ Cross-sectional total persistence:
@ Vine-based persistence:
1
Z —— > _(Di(h) = Bi(h)
i<ne (i) T

where N9 is the total number of features of dimension g
observed in all the slices and n;’(i) is the number of slices in
which the ith g-feature is visible.
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Our statistics

@ Cross-sectional total persistence:

@ Vine-based persistence:
1
Z —— > 2(Di(h) — Bi(h)
i<N Mhiiy 75

where N9 is the total number of features of dimension g
observed in all the slices and n;’(i) is the number of slices in
which the ith g-feature is visible.

o (Pooled) Ripley K-function:

rRip __
TR,'p = / Kpoo,(r)dr
0
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Exploratory analysis

Finite windoy

Figure 6: Samples of vines in dimension 0. Lines indicating the same persistence point observed in more than one slice
The a-axis denotes the slice in which the diagram is computed. The y-axis denotes the death time of the considered feature.
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Power of the tests

a = 0.05, 5000 realisations, 9 sections, Hg : Poi(\)

T PV HC, HC, CL, CL, CL3
TP, 5.08% 11.96% 15.94% 10.70% 16.58% 24.50 %
T}, 530%  5.10%  5.64% 18.24% 28.77% 38.01 %
Ty 5.00%  8.30%  9.46% 18.84% 27.47% 34.85 %
Ty 474%  510%  5.02%  19.92% 27.83% 37.156 %
Trip 4.94%  7.82%  9.76% 52.01% 70.17%  79.50%

Figure: Rejection rates for the test statistics under the Poisson—Voronoi
diagram null model and the alternatives
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Power of the tests

a = 0.05, 5000 realisations, 9 sections, Hg : Poi(\)

T PV HC, HC, CL, CL, CL3
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Figure: Rejection rates for the test statistics under the Poisson—Voronoi
diagram null model and the alternatives

Reconstruction algorithm
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Z-scores

T'[I')P TTlP T& Tl\l/l Trip
z-score  23.00 5.40 94.75 30.05 81.8

Figure: z-scores associated with the different test statistics when the
slices are tested against a Poisson-Voronoi null model
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@ Asymptotic normality of longitudinal and cross-sectional Conclusions
statistics
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Conclusions

@ Asymptotic normality of longitudinal and cross-sectional
statistics
m More statistics to be evaluated
@ Test on (more) real data
m matching algorithm for the centers of gravity among the
different sections

@ Use of other observables to construct cells (vertices)
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@ Asymptotic normality of longitudinal and cross-sectional Conclusions
statistics

m More statistics to be evaluated
@ Test on (more) real data

m matching algorithm for the centers of gravity among the
different sections

@ Use of other observables to construct cells (vertices)

@ Other nulls (power-law correlations)...




Thank you for your
attention!
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